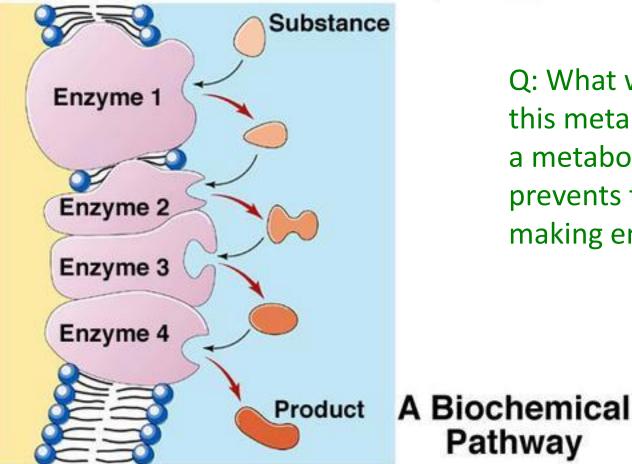

Biochemical Pathways of Eye Color Pigments in Drosophila

Review of the end of lab...

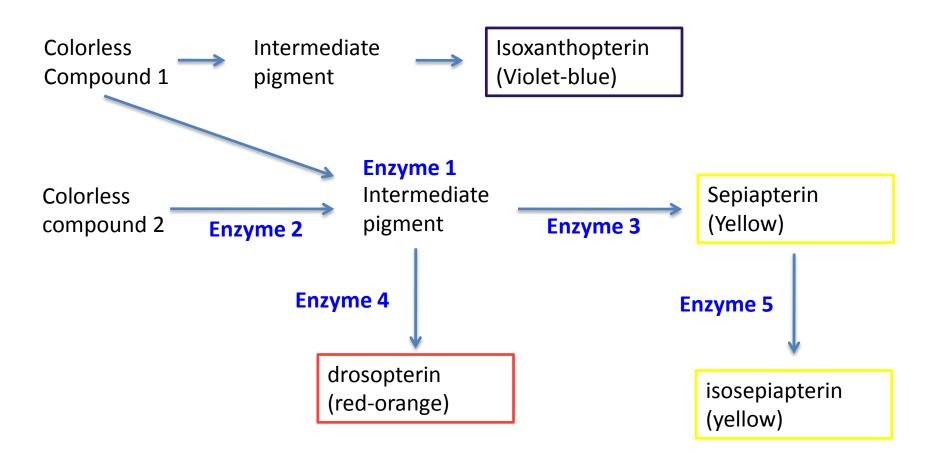
- Our flies had four different phenotypes for eye color (brick-red, sepia, brown, and white)
- Q: What causes the differences we observe in eye color?

• Many different pigment molecules are involved in producing the eye color we see


• Different combinations of pigments result in different eye colors

Q: Why would the mutants have a different combination of pigments?

- Many possibilities, but all have to do with mutations disrupting the *biochemical pathway* that makes the pigments
 - Ex. A mutation affecting a pigment's production
 A mutation affecting the transport of a
 pigment to the eye


A Generic Biochemical Pathway

Copyright © The McGraw-Hill Companies, Isc. Permission required for reproduction or display.

Q: What would happen in this metabolic pathway if a metabolic disorder prevents the cell from making enzyme 3?

Biochemical Pathway of Pteridine Eye Pigments

What is the difference between these two chromatographs?

0	isosepiapterin	yellow	0	isosepiapterin	yellow
8	biopterin 2-amino-4-hydroxcypteridine sepiapterin	blue blue yellow	ę	biopterin 2-amino-4-hydroxcypteridine sepiapterin	blue blue yellow
0	xanthopterin	green-blue	0	xanthopterin	green-blue
0	isoxanthopterin	violet blue	0	isoxanthopterin	violet blue
0	drosopterin	orange	1		1
+		in Weiner	+-		
wild-type only				a former to be a contract of the	an ginner an

Q: Which mutant is this lane?

Q: Why is Drosophila a "model organism?"

- Overall cost is low
- Morphology is easy to identify
- Short generation time (10 days at room temp)
- High fecundity (up to 100 eggs per day)
- Males and females are easily distinguished
- Giant chromosomes that show banding where transcription is happening
- Only four pairs of chromosomes
- Complete genome was sequenced in 2000